If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+512x=0
a = -16; b = 512; c = 0;
Δ = b2-4ac
Δ = 5122-4·(-16)·0
Δ = 262144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{262144}=512$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(512)-512}{2*-16}=\frac{-1024}{-32} =+32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(512)+512}{2*-16}=\frac{0}{-32} =0 $
| -3(x-1)+8(x-3)=6x+7)-5x | | k+22=101 | | 5/7(7x+7)=9 | | 16q+9(-q-2)+7=0 | | 16x+22=38 | | 1x+7=8x | | 161+9(-q-2)+7=0 | | -9=1/3(6x+15) | | 10=1x+9 | | 5x-8=2x-19 | | -10c=8−9c | | 5-(d+3)+4(d-6)=0 | | -(9x+7)=-18 | | 4x-3+60=90 | | 10=171-w | | -16x^2+512=0 | | 4(-8x+5)5=-32x-26 | | 1/5h+4=3/4h+8 | | 274=145-u | | 10=4n+12 | | 6x/10+26=90 | | 3(2x-9)+6=15 | | 2t=3t+7 | | -w+259=203 | | (2x-19)+(1/2x)=90 | | -5(4x-10)=26 | | u/2-16=24 | | x-5=11*x+5=9 | | -6x+8(x+2)=6 | | 7-2(m+8)=0 | | 3(2x-6)-10=-4 | | k-25=-35 |